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ABSTRACT

This paper proposes two novel loss functions, a multi domain loss

(MDL) and a combination loss (CL), for music source separation

with deep neural networks (DNNs). In particular, by using MDL we

take advantage of the frequency and time domain representation of

audio signals and by using CL we consider the relationship among

output source instruments, respectively. MDL and CL can easily be

applied to many existing DNN-based methods since they are merely

loss functions which are used during training and which do not affect

the inference step. Experimental results show that the performance

of Open-Unmix (UMX), which is a well-known and state-of-the-art

open source library for music source separation, could be improved

by utilizing our two new loss functions MDL and CL. Our modifica-

tions of UMX with the aforementioned MDL and CL will be made

available together with this paper.

Index Terms— Music Source Separation (MSS), Deep Neural

Network (DNN), Loss Function

1. INTRODUCTION

In the field of source separation, many approaches have been re-

searched such as local Gaussian modelling [1, 2], non-negative ma-

trix factorization (NMF) [3–5], kernel additive modelling [6] and

hybrid methods, which combine these approaches [7, 8]. In partic-

ular, there have been many methods which introduce deep neural

networks (DNNs) in order to improve the conventional performance

in recent years. There are three basic DNN architecture, namely

multi-layer perceptrons (MLPs) [9], convolutional neural network

(CNNs) [10] and recurrent neural network (RNNs) [11], and all of

these have been already introduced for the task of audio source sep-

aration. For instance, an MLP was used to separate the input spec-

tra and then obtain separated results in [12, 13]. In [14, 15], CNNs

and RNNs were also used to realize source separation which are

more successful than previous MLP-based methods since CNNs and

RNNs can consider the temporal contexts via convolution and recur-

rent layers.

Although the aforementioned researches have improved the per-

formance of conventional source separation drastically, there are two

problems with respect to optimization: (1) most existing methods

consider only the time or frequency domain and (2) they do not con-

sider the mutual influence among output sources since loss functions

are independently applied to each source estimate and the corre-

sponding ground truth instrument. For example, one of the state-of-

the-art open-source system for audio source separation, i.e., Open-

Unmix (UMX) [16]1, conducted music source separation in only fre-

quency domain since the input and output of UMX are both spectro-

grams. Furthermore, UMX applied the conventional loss functions

1https://github.com/sigsep/open-unmix-pytorch

to pairs each of which is a masked spectrogram source and the cor-

responding ground truth independently during training networks. In

other words, UMX trains networks one-by-one per each instrument

independently by using conventional loss function.

In order to solve the aforementioned problems, we pay attention

to the novel schemes with respect to loss functions and bridging net-

works. In the field of speech enhancement, which is a special case

of audio source separation, the methods considering time and fre-

quency domain have been researched in recent years [17, 18]. For

instance, Kim et al. showed in [17] the effectiveness of multi do-

main processing via hybrid denoising networks. Furthermore, Su

et al. reported in [18] that building two discriminators which are

responsible for time and frequency domain can realize effective de-

noising and dereverberation in their scheme of generative adversarial

network (GAN). On the other hand, in the field of audio source sep-

aration, it is reported the effectiveness of fully-convolutional time-

domain audio separation network (Conv-TasNet) [19, 20]. In partic-

ular, Défossez et al. reported in [20] that the performances of Conv-

TasNet was higher than those of UMX, which they were trained and

evaluated by using same train and test datasets. One of the reasons

is considered that the architecture of Conv-TasNet crosses among

sources via channels of convolutional layers while the UMX’s one

does not cross like Conv-TasNet. Therefore, it is difficult for UMX

to consider the mutual influence among source instruments obtained

by same input mixture since UMX is consisted by integrating inde-

pendent each source extraction network.

Motivated by the aforementioned, we propose a novel two loss

functions and add these to UMX, called UMX+CrossNet (cUMX),

in this paper. First is loss function named Multi Domain Loss

(MDL). Specifically, we build the additional differentiable short-

time Fourier transform (STFT) or inverse STFT (ISTFT) layer by

using 1-Dimensional convolution2 during only training, and then

apply loss functions before and after STFT/ISTFT layer. In this

way, MDL can consider not only frequency but also time domain

differences between input and output spectrograms by applying a

loss function in both domains. Second, we also propose the novel

loss function, named Combination Loss (CL), with bridging net-

work paths in UMX. As we above mentioned, not only UMX but

also almost all conventional methods for source separation train their

networks for each source independently. Thus, it is difficult to find

a cause source degrading the performance, i.e., what is the kind of

sources mixed into the results as noise. To tackle this problem, CL

consider the relationship among output sources by generating the

output spectrogram combinations and applying the MDL to these.

In addition, we bridge the UMX’s network paths to cross and share

the mutual influence of all source instruments. If the performance

of ith source separation is insufficient, the combinations including

2If the type of output is spectrogram, we adopt the ISTFT layer. Mean-

while, we adopt the STFT layer if the type of output is time signal.
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Fig. 1: Multi domain loss (MDL)

ith source are adversely affected and the others which do not in-

clude ith source are not. Note that bridging operation is specialized

handler for a network like UMX since UMX consists of each ex-

traction network independently, not separation network. Namely, a

network like Conv-TasNet which is already crossing among sources

via convolutional layer does not need like this operation. As a result

of this, it is expected to train networks effectively since finding a

cause source is possible during training. The above proposals, i.e.,

MDL and CL, only affect training step and can be introduced to the

almost all DNN-based conventional methods since they are just loss

functions. In other words, there is no additional learning parame-

ters. Consequently, effective performance improvement according

to most DNN-based source separation methods becomes feasible

without additional calculating cost at inference time.

2. NOVEL LOSS FUNCTIONS

In this section, we describe the details of our novel loss functions,

i.e., MDL and CL, and discuss their expected merits. At first, we

assume that the time-domain mixture signal y which is used as DNN

input consists of J sources, i.e.,

y =

J
∑

j=1

x j, (1)

where x j denotes the time-domain signal of the jth source. In this

section, we also assume that the output of DNN is a mask M j which

can extract a jth desired source from the mixture spectrum Y = S{y}:

x̂ j = S
−1{X̂ j}, (2)

X̂ j = M j ◦ Y, (3)

where S and S−1 are respectively forward and inverse operators of

the STFT. Furthermore, x̂ j and X̂ j are the predicted results of time

and frequency domain ground truths, i.e., x j and X j.

2.1. Multi Domain Loss (MDL)

In the scheme of MDL, we firstly build the additional differentiable

and fixed STFT or ISTFT layer after the output layer by using 1-

DNN
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We can apply 14 (= 4C1 + 4C2 + 4C3) loss functions by using the above combination masks.
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Fig. 2: Combination Loss (CL). To simplify, this figure is an exam-

ple that the mixture input is consisted of 4 sources.

Dimensional convolution. Then we applied the time and frequency

domain loss functions before and after STFT or ISTFT layer. Note

that the STFT or ISTFT layer does not affect the inference step since

this layer is only used during training in order to compute the MDL.

In particular, we used the mean squared error (MSE) between sepa-

rated and ground truth spectrograms as frequency domain loss, and

weighted Signal-to-Distortion Ratio (wSDR) [21] as time domain

loss. Therefore, in our method MDL of jth source is calculated as

follows:

L
j
MDL = L

j
MSE + αL

j
wSDR, (4)

where α is a scaling parameter. Furthermore, jth source’s MSEL
j
MSE

and wSDR L
j
wSDR are respectively calculated as follows:

L
j
MSE =

J
∑

j=1

∑

t, f

{

X j(t, f ) − X̂ j(t, f )
}2
, (5)

L
j
wSDR =

J
∑

j=1
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‖y j − x j‖ ‖y j − x̂ j‖















, (6)

where t and f denote the frame index and frequency bin in the spec-

trogram, respectively. Moreover, ρ j is the energy ratio between jth

source and mixture, i.e., ‖x j‖
2/(‖x j‖

2 + ‖y − x j‖
2).

In summary, the aforementioned scheme is shown in Fig. 1. In

this way, taking the advantages of the both of domains becomes fea-

sible via MDL, which can provide improving performance to most

conventional methods without requiring additional calculations dur-

ing inference.

2.2. Combination Loss (CL)

In the scheme of CL, we consider the combinations of output masks.

Specifically, we combine the two or more estimated masks into a

new those each of which can extract the corresponding two or more

sources from input audio. By using the new obtained combination

masks, we can apply the more loss functions than when we apply

those to pairs each of which is consisted of a separated source and

the corresponding ground truth as follows:

L =
1

N

N
∑

n=1

Ln
MDL, (7)

where N(> J) is the total number of possible combinations, namely

N =
∑J−1

i=1 JCi, and n denotes the index of nth combination3. For

3Since we confirmed that the combination JCJ , i.e., the case that output

should be equal to input, is not effective in our preliminary experiments, we
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Fig. 3: A comparison of network architectures used for our experiments.

example, in the situation of separating four sources, we can con-

sider the 14 (= 4C1 + 4C2 + 4C3) combinations in total although

conventional methods consider each source independently, namely

the number of masks is 4 (4C1) (see Fig. 2).

In order to effectiveness of CL for UMX, we also propose UMX

with crossing architecture, named UMX+CrossNet (cUMX). In our

method, the aforementioned CL aims to train each network with con-

sidering the relationship among output sources by combining out-

put masks. Therefore, we considere that it is necessary to cross not

only the loss function via CL but also network graph i.e., differen-

tial paths, in order to consider the above relationship. To realize the

aforementioned, we connect the paths to cross each source’s network

by adding just two average operators to original UMX as shown in

Fig. 3. Note that this is a special case for UMX since UMX consists

of each extraction network independently. Namely, if a target net-

work to apply CL has crossing paths among sources originally, we

can use the scheme of CL without like the above operation.

In this way, our method can consider more various sources, i.e.,

two or more source separation, than considering each source inde-

pendently via CL. As a result of this, it is expected to train networks

effectively since finding a cause source is possible during training.

This is because if the performance of ith source separation is insuf-

ficient, the combinations including ith source are adversely affected

and the others which do not include ith source are not. Furthermore,

it is considered that CL can provide the benefit which is similar to

scheme of data augmentation due to considering additional two or

more sources by using the obtained combination masks.

Consequently, we argue that MDL and CL can provide the per-

formance improvement to most conventional methods without ad-

ditional calculating cost at inferencing step since they are just loss

functions and affect only training step.

3. EXPERIMENTS

3.1. Setup

In our experiments, we evaluated the proposed method on the

MUSDB-HQ dataset [22] by using UMX and cUMX. MUSDB18-

exclude it.

HQ is comprised of 150 songs each of which is recorded at 44.1kHz

sampling rate. It consists of two subsets (‘train‘ and ‘test‘) where

we split the train set further into ‘train‘ and ‘valid‘ as defined in the

‘musdb‘ package4. For each song, the mixture and its four sources,

i.e., bass, drums, other and vocals, are available and the task is to

separate the mixture into the four original sources.

In our method, CL needs that the loss functions should be

applied to the whole network integratedly due to considering the

combination of output masks each of which is extracted from the

same input mixture, which this is a different manner from the orig-

inal UMX’s one. Specifically, original UMX independently builds

and trains a network for each source, namely using four optimizers

which are respectively responsible for bass, drums, others and vo-

cals. Therefore, in our experiments, we used only one optimizer per

each method although original UMX employed it per each source

instrument, namely original UMX has four optimizers in total. In ad-

dition, the original UMX has independent networks for each source,

and thus applying early stopping imply that it is possible to select the

best epoch per each source effectively. However, in our CL scheme,

all network parts for each source must be learned simultaneously to

consider the combination masks. Then it is considered that applying

early stopping and learning rate drops are not work effectively in

our method since they can be affected from the source having fast

or slow convergence. Hence, we did not use the function of early

stopping although original UMX library is set to use it. The rest

experimental settings followed the manner of original UMX. The

training was conducted with Adam [23], with an initial learning rate

of 0.001. Furthermore, we used a spectrogram as input, where their

sequence of STFT magnitudes is obtained by using a frame size of

4096 samples with 1/4 (= 1024 samples) overlap.

3.2. Results

To evaluate the performance of our method, we used Signal-to-

Distortion Ratio (SDR). Specifically, we used the official SiSEC

evaluation BSSEval v4 which is available as Python package ‘mu-

seval‘ at https://github.com/sigsep/sigsep-mus-eval.

The explanation of comparative and proposed methods and ex-

4https://github.com/sigsep/sigsep-mus-db/blob/master/

musdb/configs/mus.yaml



Table 1: Details of each method in our experiment and their SDR results.

METHOD Network
Applying: Median of frames, Median of tracks:

MDL CL Bass Drums Other Vocals Avg.

C1 UMX
× ×

4.84 5.77 4.16 6.28 5.26

C1 cUMX 5.36 5.80 4.25 5.80 5.30

C2 UMX
X ×

5.19 5.82 4.29 6.18 5.37

C2 cUMX 5.59 6.03 4.46 6.71 5.70

C3 UMX
× X

5.27 5.71 4.00 6.08 5.26

C3 cUMX 5.28 6.12 4.09 6.35 5.46

C4 UMX
X X

4.98 5.98 4.12 6.30 5.35

P (proposed) cUMX 5.53 6.33 4.54 6.50 5.73

Table 2: Comparison of cUMX and the other public methods in-

terms of SDR.

METHOD
Median of frames, Median of tracks:

Bass Drums Other Vocals Avg.

cUMX (proposed) 5.53 6.33 4.54 6.50 5.73

UMX [16] 5.07 6.04 4.28 6.25 5.41

Conv-TasNet [20] 5.66 6.08 4.37 6.81 5.73

Meta-TasNet [24] 5.58 5.91 4.19 6.40 5.52

DEMUCS [25] 5.83 6.08 4.12 6.29 5.58

perimental results are shown in Table 1. Note that C1 is nearly equal

to original UMX since it has same network architecture without

MDL and CL. However, C1’s performances were inferior to those

of original UMX. As we discussed in Sec. 3.1, this is because the

effects of early stopping and learning rate drops. Specifically, in

our experiments, C1 was optimized by averaging the four functions

with only one optimizer, which is responsible for all parameters, in

order to equalize the condition to cUMX’s one. Thus, it was difficult

for C1 to optimize early stopping and learning rate drops for each

source’s network while it is possible for original UMX. First, the

validity of applying MDL was confirmed since the performances

of C2 which only MDL is used for outperformed the C1 and even

C1. On the other hand, by comparing the performances of C1 and

C3, we did not confirm the effectiveness of applying only CL alone

since the C3’s performances were less than or equal to those of C1.

However, if there is the condition which network has the crossing

architecture (see Fig. 3(b)), the validity of CL was confirmed since

the C3’s scores are superior to those of C1 as denoted in the table.

Therefore, conditional CL, i.e., CL with crossing networks, is valid.

In particular, the validity of just crossing network architecture was

also confirmed since the results having “+Cross” architecture were

i.e., C1-C3 and P, were superior to the corresponding those, i.e., C1-

C4. Moreover, applying MDL with the condition which network has

the crossing architecture is more effective than applying only MDL

alone. This is because Table 1 showed that the performances of

the aforementioned conditional MDL (C2) outperformed the those

of simple MDL (C2) drastically. Hence, we can argue that music

source separation should be trained not each source independently

but all sources integrately to consider the relationship among output

sources as we denoted in Sec. 1. Next, we can confirm that the

collaborative using all our novelty, i.e., MDL and CL, with crossing

condition, which is denoted as ‘P’ in Table 1, indicated the best

performances among all methods. In particular, the results of our

method (P) are superior to not only the other comparative methods

denoted as C1-C4 and C1-C3 but also those of original UMX al-

though P is at a disadvantage in terms of having only 1 optimizer,

i.e., “w/ shared optimizer” as shown in Table 1. Furthermore, we

can confirm that the proposed method realized successful music

source separation by comparing with public state-of-the-art methods

as shown in Table 2.

From the above experimental results, we can describe the fol-

lowing contributions:

Multi Domain Loss (MDL)

Improving the performances of conventional methods be-

comes feasible by introducing MDL to during training.

Combination Loss (CL)

Although it is difficult to improve the performance of con-

ventional methods by using CL alone if the network paths are

separated for each source, it becomes beneficial given that all

networks are trained jointly.

cUMX

Crossing network paths realized by simple average opera-

tors can enhance the degree of improvement of above MDL

and CL drastically. In addition, just applying crossing opera-

tion alone can also improve the performances of conventional

methods if the paths of original target network are separated.

Finally, we argue that our proposal which collaboratively utilizes the

above, i.e., MDL and CL with crossing condition, is the most pow-

erful and effective way to improve the performances of conventional

DNN-based methods for music source separation.

4. CONCLUSIONS

In this paper, we proposed two novel loss functions called Multi

Domain Loss (MDL) and Combination Loss (CL). We showed that

MDL and CL are effective and convenient for many DNN-based

source separation methods since both are merely loss functions

which are used during training and thus do not change the inference

step. Hence, it is easy to apply them to many conventional methods.

In this paper, we applied MDL and CL to a well-known and state-

of-the-art open source library, i.e., Open-Unmix (UMX), by only

adding two average operators (UMX+CrossNet, named cUMX)

to the model and the improved results showed the validity of our

approach.
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